Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification
نویسندگان
چکیده
In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.
منابع مشابه
Air-flow navigated crystal growth for TIPS pentacene-based organic thin-film transistors
1566-1199/$ see front matter 2012 Elsevier B.V http://dx.doi.org/10.1016/j.orgel.2012.05.044 ⇑ Corresponding author. Tel.: +1 205 348 9930; fa E-mail address: [email protected] (D. Li). 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the grow...
متن کاملOrganic/Inorganic Nano-hybrids with High Dielectric Constant for Organic Thin Film Transistor Applications
The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore,...
متن کاملEffect of Surface Energy on Pentacene Thin-Film Growth and Organic Thin Film Transistor Characteristics
In this study, we discuss pentacene-based organic thin films grown on a self-assembled monolayer (SAM)-treated dielectric with various functional groups and molecular lengths. The functional groups and molecular lengths on the dielectric surface were modified using a SAM treatment followed by ultra violet (UV) light exposure. Surface energy was used to observe the surface polarity variation dur...
متن کاملIn situ preparation, electrical and surface analytical characterization of pentacene thin film transistors
The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation...
متن کاملPolymer gate dielectric surface viscoelasticity modulates pentacene transistor performance.
Nanoscopically confined polymer films are known to exhibit substantially depressed glass transition temperatures (Lg's) as compared to the corresponding bulk materials. We report here that pentacene thin films grown on polymer gate dielectrics at temperatures well below their bulk Tg's exhibit distinctive and abrupt morphological and microstructural transitions and thin-film transistor (TFT) pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2015